

Three Approaches to Implementing the Two-Dimensional

Fourier Transform using Thread, MPI, and Cuda

Wootae Song: wootae@gatech.edu

Alberto Li: ali97@gatech.edu

Edward Zhou: edz@gatech.edu

Benjamin Thornbloom: bthornbloom3@gatech.edu

Due: Dec 13, 2018

mailto:ali97@gatech.edu
mailto:ali97@gatech.edu
mailto:edz@gatech.edu
mailto:bthornbloom3@gatech.edu

 1

Abstract

The goal of the final project was to implement the two-dimensional fourier transform using three

different methods: std::Thread library, MPI, and Cuda. We have also implemented the inverse

discrete fourier transform to validate our results. Each method of implementation was uniquely

written for optimized runtime based on the computing model. We compared the performance of

each method against each other. This information is shown in the results section.

STD::Thread

The first implementation of the two-dimensional fourier transform was a multi-threaded

approach using the std::thread library and running on a machine with eight cores. When the

source code is compiled, it will produce an executable of the name “p31”. This method was

implemented using an 𝑁2 approach as suggested by the project description.

MPI

The second implementation of the two-dimensional fourier transform was an MPI approach

running on a coc-ice MPI job using a pbs script with 8 MPI ranks. When the source code is

compiled, it will produce an executable of the name “p32”. This method was implemented using

the Danielson-Lanczos algorithm, an 𝑁𝑙𝑜𝑔 (𝑁) approach as suggested by the project

description.

 2

CUDA

The third implementation of the two-dimensional fourier transform was a GPU approach using

CUDA and running on a coc-ice job queue. When the source code is compiled, it will produce an

executable of the name “p33”. This method was implemented using an 𝑁2
approach.

Inverse Discrete Fourier Transform (Reverse DFT)

For the Thread computing model, we have implemented the inverse discrete fourier transform.

Adding this functionality has allowed us to validate the accuracy of our forward DFT since

IDFT(DFT(Image))) will reproduce the values of the original image. Below is a screenshot of the

first few entries of the IDFT on Tower256.txt.

Figure 1. First few entries of the IDFT when running ./p31 reverse Tower256.txt reversed.txt

 3

Results

The std::Thread, MPI, and CUDA computing methods were tested with text files of the

following sizes: 128x128, 256x256, 512x512, 1024x1024, and 2048x2048. The execution times

for each of the methods were timed. std::Thread and MPI were timed using std::chrono’s high

resolution clock at a microsecond granularity and CUDA was timed by submitting pbs scripts

and looking at the walltime due to nvcc’s bug with chrono.

std::Thread:

Figure 2. std::Thread’s timing for all the sizes

 4

MPI:

Figure 3. MPI’s timing for all the sizes

CUDA:

Figure 4. CUDA’s timing for 128x128

 5

Figure 5. CUDA’s timing for 256x256

Figure 6. CUDA’s timing for 512x512

 6

Figure 7. CUDA’s timing for 1024x1024

Figure 8. CUDA’s timing for 2048x2048

 7

The results of each DFT computing method were compared against the results of the

corresponding sizes (128x128, 256x256, ...,2048x2048) and the results of each matched. The

table below summarizes the results:

Figure 9. Results matrix in seconds.

As expected, CUDA took significantly less time than the other methods and std::Thread took the

most time among all the methods. For the 2048x2048 DFT, CUDA only took 6 seconds to run

while std::Thread took around 21 minutes which was 207 times longer. Additionally for the

2048x2048 DFT, CUDA only took 6 seconds to run while MPI took around 10 minutes which

was 99 times longer. Lastly for the 2048x2048 DFT, MPI only took 10 minutes to run while

CUDA took around 21 minutes which was 2 times longer. As N increases, the difference in

execution time of each of the computing methods will increase drastically as std::Thread is

O(𝑛2), MPI is O(𝑛𝑙𝑜𝑔(𝑛)), and CUDA is O(1).

These performance comparisons are visualized separately (Figures. 10, 11, 12) and together

(Figure. 13). By comparing the runtime results of the three different DFT implementations, the

following graphs below were produced.

 8

Figure 10. Time (s) vs Size (NxN) for std::Thread

 9

Figure 11. Time (s) vs Size (NxN) for MPI

 10

Figure 12. Time (s) vs Size (NxN) for CUDA

 11

Figure 13. Time (s) vs Size (NxN) for std::Thread, MPI, and CUDA

In conclusion, the results of our three unique implementations based on the programming

models: std::Thread, MPI, and CUDA suggest that GPU computation was the most efficient,

MPI was the second most efficient, and std::Thread was the least efficient.

